
1

Fine-Tuning Multi-Modal LLMs for Materials
Discovery

Daniel Ceballos, Renjie Li, Lynford Goddard

Abstract—The discovery of new materials is important for
technological progress, but is usually a slow and laborious process.
Advancements in artificial intelligence, such as large language
models (LLMs) and vision transformers, are resulting in faster
and more efficient approaches to polymer design. Here, we present
a viable pipeline assisted by transformer-based LLMs and vision
transformers that accelerate the development of novel photoresists
for photonic integrated circuits (PICs).

Index Terms—Large language models, semiconductor lasers,
inverse design, PCSEL, photonic crystal, CSL, machine learning,
photonic integrated circuits, polymer informatics

I. INTRODUCTION

With global data usage growing at approximately 20% an-
nually, we need higher bandwidth methods of data transfer [1].
Photonic integrated circuits (PICs) present a unique solution.
Using light rather than electricity to transmit information and
integrating lasers, waveguides, modulators, photodetectors, and
other components on a single substrate to maximize efficiency
and miniaturization [2, 3]. Fundamentally, light is described as
electromagnetic waves that oscillate through space according
to Maxwell’s equations. First described by Einstein, at the
quantum level, light is made up of photons, massless bosons
carrying both energy and momentum, acting as both particles
and electromagnetic waves. [4].

This allows them to transmit information efficiently via
total internal reflection in fiber optics. [2]. PICs are a
promising alternative to electronics; no ohmic heating (less
energy loss), no inertia (photons are massless), immunity to
electromagnetic interference, and bandwidths that can exceed
electronic transmission by one to two orders of magnitude [1, 2,
5]. For example, state-of-the-art systems have achieved petabit-
per-second data rates. [5]. Electronic circuits typically max
out at 40–400 Gbps per channel, which is insufficient for the
future demands of science, finance, medicine, and AI.

In contrast to electronic circuits, which rely on transistors
for logic, PICs use nanoscale photonic devices to focus, split,
isolate, polarize, couple, and modulate light [2, 3]. The main
“active devices” in a PIC are: lasers (generate photons at specific
wavelengths for signal transmission), waveguides (channeling
photons through the circuit, analogous to wire in electronic
circuits), photodetectors (convert light into electrical signals),
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and modulators (manipulate phase, amplitude, or polarization
to encode information) [2, 6]. Current progress in photonic-
crystal surface-emitting lasers (PCSELs), the on-chip laser, is
further improving PIC scalability and performance [4, 6].

Fig. 1: Schematic structure of a photonic crystal surface-
emitting laser (PCSEL). [rp-photonics].

The development of new materials for these devices, es-
pecially novel photoresists suitable for advanced two-photon
polymerization (2PP), is severely limited by the vast chemical
space of possible polymers [7]. Traditional polymer-chemistry
R & D can take five or more years to deliver meaningful
results. To expedite the process, advanced machine learning and
LLM/AI methods present a potentially significant improvement
in the speed and efficiency with which new polymers could
be discovered [7–9].

II. MACHINE LEARNING FOR ACCELERATED MATERIALS
DISCOVERY

The past couple years we have seen massive improvements
in materials discovery with AI and machine learning [7].
Large language models (LLMs) for chemistry like Chem-
Crow [10] utilizing transformer architectures, have allowed
faster and cheaper prediction of chemical properties and
synthesis routes. [10, 11]. Transformers, first introduced by
Vaswani et al. [12], use self-attention to model relationships
within sequences and are effective for SMILES string represen-
tations. SMILES was the chosen route for monomer/polymer
representation because of their ease of understanding and
interpretation by transformer networks, which allowed our
models to more efficiently learn and predict specific chemical
properties. Unlike convolutional networks, transformers capture
both local and distant dependencies, making them valuable for
chemistry prediction [11, 13].

Vision transformers (ViTs) use these principles but for visual
data, splitting images into arrays and processing them as tokens,
which then extract morphological and structural information
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(a) Polymer-property prediction (b) Photonic-device performance prediction

Fig. 2: Training-loss convergence of the fine-tuned Qwen models. Both tasks reach a stable minimum after ∼5 epochs, with the
photonic model requiring slightly more iterations to plateau.

Fig. 3: CC(=O)NC1=CC=C(C=C1)O) into its 3-D, energy-
minimized ball-and-stick model. The structure was generated
and rendered with CCDC Mercury.

Fig. 4: Feedforward neural network. The input layer receives
n inputs, which are processed through multiple hidden layers
before producing n outputs.

and can make predictions based on these. [10, 14]. Our ViTs
were trained on labeled image datasets to identify characteristics
necessary for photonic device performance [4, 14].

Our approach integrates both modes: transformers for
chemical structure prediction and ViTs for device image

analysis, enabling a multi-modal AI pipeline for identifying
new photoresist resins for two-photon polymerization in PIC
fabrication [7, 10].

III. METHODS

We began by reviewing current literature on neural networks,
vision transformers, transformers, AI/LLMs, polymer chem-
istry, and multi-photon lithography [6–8, 14]. We eventually
began our first phase which was utilizing ChemCrow. Chem-
Crowhttps://github.com/ur-whitelab/chemcrow-public, version
v0.3.24, commit 9a18c01) was deployed into the UIUC ICRN
JupyterHub environment, which provided access to PyTorch 2.x
(preinstalled), eight NVIDIA A100 GPUs, and dual Intel Xeon
CPUs. ChemCrow’s published success in automated synthesis
planning was why it was selected [10]. Alternative models
with future implementation like the Molecular Transformer and
trained multi-modal LLMs have further demonstrated high ac-
curacy in chemical properties and thus reaction prediction [13]
[11].

The next phase attempted to implement various curated
datasets of structured chemical information into the open source
LLM Qwen. The implementation we built in was UIUC’s
ICRN JupyterHub environment. Utilizing LoRa adapters, un-
sloth, ollama, hugging face, and numerous other features and
libraries like RDKit, SciPy, semantic scholar, paperscraper,
and PubChem Search. We extracted, parsed, and collected
useful chemical information and academic standard methods
of synthesis of these polymers. [8, 9]. These coding pipelines
sufficiently provide the data for large-scale model training and
fine-tuning.

IV. RESULTS

We generated and evaluated three distinct synthesis plans,
each of which proposed different properties for the target
photoresist resin. The best combination identified so far
uses Lucirin TPO, pentaerythritol tetraacrylate (PETA) and
rhodamine 6G.

https://github.com/ur-whitelab/chemcrow-public
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Fig. 5: Workflow interface. This figure describes the iterative
workflow of our procedure in training our LLM and selecting
possible polymers.

Our preliminary synthesis included the mixture of the
photoinitiator Lucirin TPO-L and the monomer PETA (Pen-
taerythritol Tetraacrylate) with the solvent ethyl acetate and
cosolvent PGMEA (propylene glycol Methyl ethyl acetate).
Lucirin was chosen as the most optimal photoinitiator because
of its excellent two-photon absorption cross-section. [8, 9].

V. DISCUSSION

This work demonstrates the transformer-based models, mul-
timodal LLM integration, and simulation in materials discovery.
As transformer and vision transformer-based LLMs improve
in accordance with Moore’s Law, our work here will only
improve the natural language processing, vision processing,
and workflow demands required for complex polymer chemistry
prediction to design novel photoresists for laser components.
On-chip laser sources and nanophotonic circuits will allow
us to gain even better performance out of PICs. Ongoing
improvements in active device components on PICs through
LLM-powered materials discovery will assist in scaling PICs to

Fig. 6: Visualization of a photonic crystal surface-emitting
laser (PCSEL) structure used for Qwen model training and
evaluation. The upper panel shows the top view of the PCSEL.
The lower panel shows a cross-sectional view,. These inputs
were used for model learning of device property prediction.

meet the demands for data, AI, and quantum-technology. LLM-
powered materials science research are promising in R&D in
industry and academia. [15] [4, 6] [4] [7]

VI. CONCLUSION

Our work here illustrates a novel approach to discover-
ing functional polymers through LLM/AI training and aug-
mentation. Our pipeline presents possible AI workflow for
accelerating polymer-chemistry research, making discovery
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exponentially faster, more efficient, and more accessible to
beginners. This shift in academia and industry will continue
to revolutionize the photonic-integrated-circuit industry.
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